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ABSTRACT 

It is well known that thermal analysis techniques are widely applied in the characterization 

of polymer cure and pyrolytic processes and in probing reaction kinetics. However, differen- 
tial thermal analysis is frequently applied in researching nonisothermal reaction kinetics. In 
this work, the nonisothermal rate equation has been incorporated into a computer program 
which performs an automatic calculation of kinetic parameters by a multiple linear regression 
method from data for a single DTA curve. This computerized analysis is quite general and 
applied to various thermal events. 

INTRODUCTION 

The knowledge of reaction kinetics is important in two respects. First, 
such kinetics are related to simple mathematical descriptions of the process. 
Second, they are important data in the evaluation of stability and compati- 
bility for energetic materials and in the study of manufacturing processes for 
crystalline materials. Since thermal analysis techniques show versatility in 
studying the kinetics of cases such as those of crystalline and non-crystalline 
materials, a number of methods for evaluating the kinetic parameters has 
been developed. Both isothermal and nonisothermal forms of the Johnson- 
Mehl-Avrami rate equation have also been explored. Various analysis 
methods have been employed, which include peak displacement [l-3], 
temperature integral [4], temperature derivation [5], combined differential 
and integral [6], and linear interpolation methods [7]. It is generally recog- 
nized that further studies of kinetic processes are necessary, meaningful and 
important. 

In general, it is advantageous to determine kinetic parameters from a 
single curve analysis, especially if large amounts of materials are to be 
analyzed. In this paper, we create a computer program that is based on 
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multiple linear regression analysis for evaluating the nonisothermal kinetic 
parameters from a single DTA curve. The analogue curve data of DTA are 
converted into digital curve data through the RS-232 serial interface card of 
a PC/AT microcomputer. The temperature displacements are functions of 
temperature and partial area in a reaction peak. A reaction peak can be 
divided into many small strips, the sets of data strips, (Xi, q:, AT), being 
taken into the multiple linear regression program to calculate the activation 
energies and orders of the reaction. The computerized analysis system has 
been applied to the thermal decomposition processes of NaHCO, and 
CaC,O, . H,O, and the calculated kinetic parameters are consistent with 
those in the literature. However, this analysis system offers the advantage of 
being straightforward for both data acquisition and analysis of kinetic 
parameters. 

THEORETICAL 

Kinetics 

As in many nonisothermal kinetic investigations, we shall start from the 
fundamental differential rate equation 

dX/dt = k(T)f( X) (I) 

where t indicates time, T is temperature, and X denotes degree of conver- 
sion. The dependence of reaction rates on temperature is usually assumed to 
be an Arrhenius type equation 

k(T) =A exp( -E/RT) (2) 

or the equation predicted by transition state theory 

k(T) = ATb exp( -E/RT) (3) 

where E is the apparent activation energy, A is the pre-exponential factor, 
R is the gas constant, and b is a constant. It is worthwhile to mention that 
k(T) simply represents the isothermal rate constant. As far as the conver- 
sion function is concerned, its general form is [S] 

f(X) = (1 - X)“Xm[ -ln(l - X)] ’ (4) 

where n, m and p are constants. Combining eqns. (l), (3) and (4), we have 

dX/dt = ATb exp( -E/RT)(l - X)“Xm[ -ln(l - X)] ’ (9 

Taking logarithms on both sides of eqn. (5) 

ln(dX/dt) = In A + b In T - (E/R)(l/T) + n ln(1 - X) + m In X 

+p ln[ -ln(l -X)] (6) 



Equation (6) may be written in the following form 

Y = A, + A,Z, + IQ,& + A& + A.$?~ + A,Z, 
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(7) 

MultipEe linear regression (MLR) 

The techniques of least-squares fitting which have been developed [9] fall 
into the general category of regression analysis. Consider a general function 
which is linear in the coefficients 

Y=A,+A,X,+A,X*+ . . . +PI,xn (8) 

where the Xi are functions of independent variables and the Ai indicate 
coefficients. The method of least squares results in a set of n + 1 simulta- 
neous equations 

zir( = A,N + A,Z,X, + @,X2 + . . . +A,ZiXn 

Z&Xi = AJiXj + AJiX,Xj + A2XiX2Xj + . . . A,ZiXnXj (9) 

The sums are taken over the N observations, considering the Xj to be 
functions XJx,). 

One can simplify these equations and increase their sy~et~ by consid- 
ering the first equation to be a separable solution for the first term A, in the 
fitting function of eqn. (8). Rewriting the first equation of eqns. (9) in such a 
way that the coefficient A, is expressed explicitly as a function of all the 
other coefficients 

A, = (l/N)[ zir;: - ArZ,X, - A,ZiX~ - . * * - A,Z,X,] 

= Y-A,jG;,-A&- ..* 74,X, 00) 

where y and x/ are averages of Y and the functions Xj(xi) over the iV 
observations. After solving the remaining n simultaneous equations, one can 
then substitute the fitted values of the n coefficients AI into eqn. (10) to 
solve the constant coefficients A,. 

With the definition, the formula for x2 becomes 

- . . . -4t(X, - XJl’ (11) 
The values of the coefficients for which x2 is a minimum are determined by 
setting the derivatives of x2 with respect to each of the n coefficients Aj 
equal to 0. This yields n simultaneous equations. 

zj(~-Y)(x~-~~)=~~[Aj~,(Xj-X,)(X,-X,)] k=l ton 02) 
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These equations can be simplified further by substituting the definitions for 
the linear correlation coefficients rij given as follows 

s;= [l/(N-l)]Zi(Y,- Y)2 03) 

Equations (12) become n simultaneous equations in bj 

rkY = Z;bjrjk k = 1 to n 04) 

where the coefficients b, are related to the coefficients Aj of the function of 

eqn. (8) 

bj = Ajsj/sy (15) 

and the diagonal terms in r are unity, rjj = 1. Consider eqns. (14) to be a 
matrix equation 

[5] = frl fb] 06) 

here [r,] and [b] are column matrices of linear correlation coefficients ‘jv 
and coefficients bj, and [r] is the matrix of the linear correlation coefficients 
rij, for which the solution is 

[b] = b-1 -‘[G] 
bj = Zkn(rk,q;*;l) 07) 

where 52 1 = rk;l is the j th term of the matrix [r]- *, which is the inverse of 
the matrix [r] of the linear correlation coefficients. 

The partial regression coefficients Aj of the original function of eqn. (8) 
can be determined by substituting the definition of eqn. (15) 

A, = ( Sy/Sj)~kn( Pk$) 08) 

EXPERIMENTAL 

The measurements were carried out on a Rikagu-Denki differential 
thermal analyzer, model 8121. The heating rates applied were 5, 10 and 
20 * C min-‘. The ar-alumina powder was used as a reference material over 
all measurements. The measured materials (NaHCO,, CaC,O, - H,O) were 
used in powder form without further treatment. 
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In a regular run, the DTA curves of the decomposition process of the 
sample were collected on the DT analyzer. The analogue signals of the DTA 
curve were transferred to a fully IBM compatible PC/AT by a RS-232 
interface system, and were converted into digital data and saved in a disk 
file. A set of data for a reaction peak can be located from the disk file and 
loaded into the MLR program to be analyzed. 

DATA ANALYSIS AND RESULTS 

Consider the characteristic temperature of the DTA curve in Fig. 1. The 
temperature deviation AT from the DTA baseline will be proportional to 
the reaction rate of the material [lo] 

AT = K(dX/‘dl) 

where K is a constant. Here the rate of the decompositional 
expressed by 

dX/dt =A(1 - X)” exp( -E/K”) 

Combining eqns. (19) and (20), we have 

AT= (A/K)(l - X)” exp( -E/RT) 

Taking logarithms of eqn. (21), one can obtain a formula similar 

In AT = ln( A/k) + n ln(1 - X) - (E/R)(l/T) 

(19) 
process is 

(20) 

(21) 

to eqn. (6) 

(22) 

However, we can take a set of data, (Xi, T, AT), from the DTA curve into 
eqn. (22) to be calculated, and evaluate the activation energy and reaction 
order. 

The reaction of dehy~ation of calcium oxalate monohydrate and the 
reaction of decarboxylation of sodium bicarbonate have been studied by 
DTA. The obtained data were processed by our programs. The results 

T 

Fig. 1. The characteristic temperature of the DTA curve. 
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TABLE 1 

Kinetic parameters of thermal decomposition materials 

Compound 

NaHCOs 

CaC,O,.H,O 

Values talc. in this work 

n E (kcal mol-‘) 

1.01 19.5 

0.71 27.2 

Literature values 

n E (kcal mol -‘) 

0.90 22.4 
0.77-0.78 22-23 
0.83 22-24 
0.71 13.2 
0.98 22 
1.0 20.8 

Ref. 

10 
11 
12 
10 
12 
13 

calculated are listed in Table 1, and show a good agreement with those 
found in the literature [lo-131. The amount of sample and the heating rate 
do not influence the values of the kinetic parameters. 

CONCLUSIONS 

1. A multiple linear regression program has been created which enables 
direct simulation of the curve data of DTA without complicated mathemati- 
cal transformation. 
2. The program can also be applied to analyze the reaction kinetics of other 
thermal analysis techniques, such as DSC curves. 
3. This work offers a simplified and convenient method for rapidly calculat- 
ing kinetic parameters. 
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